12 research outputs found

    Terrain Prickliness: Theoretical Grounds for High Complexity Viewsheds

    Get PDF
    An important task in terrain analysis is computing viewsheds. A viewshed is the union of all the parts of the terrain that are visible from a given viewpoint or set of viewpoints. The complexity of a viewshed can vary significantly depending on the terrain topography and the viewpoint position. In this work we study a new topographic attribute, the prickliness, that measures the number of local maxima in a terrain from all possible angles of view. We show that the prickliness effectively captures the potential of terrains to have high complexity viewsheds. We present near-optimal algorithms to compute it for TIN terrains, and efficient approximate algorithms for raster DEMs. We validate the usefulness of the prickliness attribute with experiments in a large set of real terrains

    Terrain prickliness: theoretical grounds for high complexity viewsheds

    Get PDF
    An important task when working with terrain models is computing viewsheds: the parts of the terrain visible from a given viewpoint. When the terrain is modeled as a polyhedral terrain, the viewshed is composed of the union of all the triangle parts that are visible from the viewpoint. The complexity of a viewshed can vary significantly, from constant to quadratic in the number of terrain vertices, depending on the terrain topography and the viewpoint position. In this work we study a new topographic attribute, the prickliness, that measures the number of local maxima in a terrain from all possible perspectives. We show that the prickliness effectively captures the potential of 2.5D terrains to have high complexity viewsheds, and we present near-optimal algorithms to compute the prickliness of 1.5D and 2.5D terrains. We also report on some experiments relating the prickliness of real word 2.5D terrains to the size of the terrains and to their viewshed complexity.Peer ReviewedPostprint (author's final draft

    Half-Guarding Weakly-Visible Polygons and Terrains

    Get PDF
    We consider a variant of the art gallery problem where all guards are limited to seeing 180degree. Guards that can only see in one direction are called half-guards. We give a polynomial time approximation scheme for vertex guarding the vertices of a weakly-visible polygon with half-guards. We extend this to vertex guarding the boundary of a weakly-visible polygon with half-guards. We also show NP-hardness for vertex guarding a weakly-visible polygon with half-guards. Lastly, we show that the orientation of half-guards is critical in terrain guarding. Depending on the orientation of the half-guards, the problem is either very easy (polynomial time solvable) or very hard (NP-hard)

    Terrain Prickliness: Theoretical Grounds for High Complexity Viewsheds

    Get PDF
    An important task in terrain analysis is computing viewsheds. A viewshed is the union of all the parts of the terrain that are visible from a given viewpoint or set of viewpoints. The complexity of a viewshed can vary significantly depending on the terrain topography and the viewpoint position. In this work we study a new topographic attribute, the prickliness, that measures the number of local maxima in a terrain from all possible angles of view. We show that the prickliness effectively captures the potential of terrains to have high complexity viewsheds. We present near-optimal algorithms to compute it for TIN terrains, and efficient approximate algorithms for raster DEMs. We validate the usefulness of the prickliness attribute with experiments in a large set of real terrains

    Efficient Independent Set Approximation in Unit Disk Graphs *

    No full text
    International audienceWe consider the maximum (weight) independent set problem in unit disk graphs. The high complexity of the existing polynomial-time approximation schemes motivated the development of faster constant-approximation algorithms. In this article, we present a 2.16-approximation algorithm that runs in O(n log^2 n) time and a 2-approximation algorithm that runs in O(n^2 log n) time for the unweighted version of the problem. In the weighted version, the running times increase by an O(log n) factor. Our algorithms are based on a classic strip decomposition, but we improve over previous algorithms by efficiently using geometric data structures. We also propose a PTAS for the unweighted version

    Minimum Color Spanning Circle of Imprecise Points

    No full text
    Let be a set of n colored imprecise points, where each point is colored by one of k colors. Each imprecise point is specified by a unit disk in which the point lies. We study the problem of computing the smallest and the largest possible minimum color spanning circle, among all possible choices of points inside their corresponding disks. We present an time algorithm to compute a smallest minimum color spanning circle. Regarding the largest minimum color spanning circle, we show that the problem is and present a -factor approximation algorithm. We improve the approximation factor to for the case where no two disks of distinct color intersect
    corecore